
Bayesian Methods for Assessing System Reliability:
Models and Computation

Todd L. Graves

Statistical Sciences
Los Alamos National Laboratory

Los Alamos, New Mexico
USA

tgraves@lanl.gov

Michael S. Hamada

Statistical Sciences
Los Alamos National Laboratory

Los Alamos, New Mexico
USA

hamada@lanl.gov

Abstract

There are many challenges with assessing the reliability of a system today. These challenges arise
because a system may be aging and full system tests may be too expensive or can no longer
be performed. Without full system testing, one must integrate (1) all science and engineering
knowledge, models and simulations, (2) information and data at various levels of the system, e.g.,
subsystems and components and (3) information and data from similar systems, subsystems and
components. The analyst must work with various data types and how the data are collected,
account for measurement bias and uncertainty, deal with model and simulation uncertainty and
incorporate expert knowledge.

Bayesian hierarchical modeling provides a rigorous way to combine information from multiple
sources and different types of information. However, an obstacle to applying Bayesian methods
is the need to develop new software to analyze novel statistical models. We discuss a new
statistical modeling environment, YADAS, that facilitates the development of Bayesian statistical
analyses. It includes classes that help analysts specify new models, as well as classes that support
the creation of new analysis algorithms. We illustrate these concepts using several real-world
examples.

1 Challenges in Modern Reliability Analyses

There are many challenges with assessing the reliability of a system today. First, full system testing may be
prohibitively expensive or even prohibited. For this reason and others, it is important to be able to make
use of expert opinion and information in the form of physics/engineering/material science based models
(deterministic and stochastic) or simulation and account for model bias and uncertainty. One must be able
to handle complex system reliability models, including reliability block diagrams and fault trees. One must
incorporate data at various levels (system, subsystem, component), and properly account for how higher
level event data inform about lower level data. In this context, models for subsystems or even components
can be non-trivial. The effects of aging and other covariates including those that define subpopulations, are
often of interest. Efficient analysis entails combining information and data from similar systems, subsystems
and components. Reliability data can come in various flavors, including binomial counts, Poisson counts,
failure times, degradation data, and accelerated reliability data. Measurement error (bias and precision)
from destructive or nondestructive evaluation techniques may be too large to ignore. In what follows we
consider three examples which illustrate these challenges.

2 Three Important Examples

We discuss three examples of challenging statistical problems that arise in reliability estimation. First,
even the analysis of a single component can require development of new techniques. Consider the case in
which there are indications that a component’s manufacturing lot impacts its reliability, and some of the
test data are obtained in ways that might favor the sampling of (un)reliable items. Second, we discuss the
estimation of the reliability of a system based on (1) system tests, where failures provide partial information
about which components may have failed, and (2) specification tests, which measure whether components



meet specifications that relate imperfectly to system success. Finally, we present an ambitious approach to
integrating many sorts of component data into a system reliability analysis.

2.1 Reliability of a Component Based on Biased Sampling

Our first example, which deals with reliability estimation for a single component, is discussed in Graves et

al (2004). Of interest is the prevalence of a certain feature in an existing population of items. Some items
have already been destructively tested and removed from the population. There is reason to believe that
the probability that an item has the feature is related to the lot in which it was manufactured, but it is
not obviously appropriate to assume that the feature is confined to a small number of lots. We handle this
situation with a Bayesian hierarchical model, pi ∼ Beta(a, b), where pi is the probability that an item in lot
i was manufactured with the feature, and where a and b are given prior distributions, so that a test on an
item in one lot is informative about the prevalence of the feature in the other lots, but more informative
about its own lot. A further complication is we are not willing to assume that the process by which items
were selected for sampling was done so that items with and without the feature were equally likely to be
sampled. Naive estimation is therefore in danger of systematically over- or under-estimating the prevalence.
We use the extended hypergeometric distribution (see Graves et al (2004) and its references) to allow for the
possibility of biased sampling; using this distribution for this purpose was new, so software did not exist
for using it. Finally, the unknown quantities of most interest are the actual numbers of items with the
feature in each of the lots (which were of known finite size), so the software must be able to sample posterior
distributions of quantities which take on finitely many values.

2.2 System Reliability Based on Partially Informative Tests

Another reliability problem involves synthesizing two different types of data, neither of which is standard
for reliability analysis. First, the system test data provide complicated information: for notational clarity,
consider a single system test. If the set of components in the system is denoted by C, there is a subset
of components C1 that we know to have worked, another subset of components C0 that we know to have
failed, and a third subset of components C2, at least one of which must have failed. (The test provides no
information at all about the success or failure of the remaining components.) The system is a series system.
The likelihood function for this single test, assuming that the system is of age t, is

∏

i∈C1

pi(t)
∏

i∈C0

{1− pi(t)}

{

1−
∏

i∈C2

pi(t)

}

, (1)

where the first two products are defined to be one if empty, while the last is zero. Here pi(t) is the probability
of success of component i at age t: we used pi(t) = Φ

(

(σ2
i + γ2

i )
−1/2(αi + βit− θi)

)

, where Φ is the Gaussian
distribution function.
One reason for this choice of pi(t) (in particular, the seemingly redundant parameterization) is the other

type of data we use: certain of the components were tested to assure that they met specifications, and
these tests generate continuous data. If one assumes that the a specification measurement Si on compo-
nent i satisfies Si ∼ N(αi + βit, γ

2
i ), specification data can be incorporated naturally. Then if one assumes

that, conditionally on its specification measurement Si, the component would succeed in a system test
with probability Φ

(

σ−1

i (Si − θi)
)

, it follows that unconditionally, the component’s success probability is

Φ
(

(σ2
i + γ2

i )
−1/2(αi + βit− θi)

)

. This enables us to use specification data to help make inferences on pa-
rameters relevant to system tests. They also require special-purpose software.

2.3 Integrated System Reliability Based on Diverse Data

A fundamental problem of system reliability is estimating the reliability of a system whose components are
combined in series and parallel subsystems, and where data relevant to the component qualities take on
general (not necessarily binomial) forms. (The case of binomial data is discussed in Johnson et al (2003).)
As a simple example, consider a three component series system. Binary data is available on Component 1
at various ages, and its success probability at age t satisfies log(p1(t)/{1 − p1(t)}) = α1 − β1t. “Success”



for Component 2 is defined in terms of its lifetime which is distributed Weibull: a lifetime of greater than
τ2 equates to component success at time t < τ2, and data on Component 2 are a collection of possibly
right-censored lifetimes. Component 3 is required to generate a desired amount of power on demand; the
distribution of power is lognormal, with a logged mean that decreases linearly in age. Data are (power, age)
pairs. Finally, we have binary system test data, where the success probability is the age-dependent success
probability of Component 1, multiplied by the reliability of Component 2, multiplied by the age-dependent
probability of sufficient power generation by Component 3. The full data likelihood contains terms for each of
the four types of tests, and other information can be captured in prior distributions. It is necessary that the
software analyze likelihood functions with each of these terms, and ideally it would support the integration
of components into (sub)systems in arbitrary parallel/series combinations.

3 Useful Features of YADAS

YADAS is a software environment for performing arbitrary Markov chain Monte Carlo computations, and as
such it is very useful for defining and analyzing new, nonstandard statistical models. Its source code and docu-
mentation, several examples, and supporting technical reports are available for download at yadas.lanl.gov
(Graves (2001)). Its software architecture makes it easy to define new terms in models and make small adjust-
ments to existing models. MCMC algorithms often suffer from poor autocorrelation, and YADAS provides
an environment for exploring and fixing these problems. YADAS is written in Java and generally requires
additional Java code to work a new problem, but work continues on alternative interfaces. We discuss all
these issues in this section.

3.1 Expressing arbitrary models

Defining a model in YADAS is as simple as specifying how to calculate the unnormalized posterior distri-
bution evaluated at an arbitrary parameter value. This is an advantage of a Bayesian approach, as well as
being one of the benefits of the design decision to emphasize the Metropolis–Hastings algorithm instead of
Gibbs sampling as in WinBUGS (Spiegelhalter et al, 2000). In the Gibbs sampler, each time the model is
changed, the sampling algorithm must be changed accordingly. In YADAS, however, the model definition
is decoupled from the algorithm definition. The correct posterior distribution will be sampled if the ac-
ceptance probabilities are generated correctly, and since the acceptance probabilities are determined by the
unnormalized posterior density function, this happens automatically when the new model is defined.
The definition of a model is a collection of objects called bonds. Each bond is a term in the posterior

distribution. Bonds are defined in the software in such a way as to make it easy to make the sort of
small changes to an analysis that are common in the model–building phase. Examples include changing a
parameter from fixed to random, or changing a distributional form.
The ease of defining new models was particularly evident in the analysis of the reliability of the component

manufactured in lots and sampled nonrandomly. The analysts needed to write code to calculate the extended
hypergeometric density function, but after this trivial exercise was complete, it could be plugged in as any
other density would be. Without YADAS, time constraints would have forced the analysts to make use of a
more convenient but less appropriate analysis.
In our second example, the critical step was to compute (1) after first computing the pi(t)’s. This was also

straightforward, and the handling of specification data just required adding another bond (with the familiar
normal linear model form) to the existing list. The third example, in which various forms of component test
data are combined with system test data, is an excellent example of the usefulness of the YADAS model
definition strategy. The component test data are as easy to include as in an application where they are the
only data source. We make use of YADAS’s general code that reads in a system structure and integrates
component success probabilities in any series or parallel combination, in order to incorporate the system test
data.

3.2 Special algorithms

While it is true that defining an MCMC algorithm for a new problem is as easy as specifying how to compute
the unnormalized posterior distribution, it is also true that these first attempts at algorithms may fail to



perform adequately. However, YADAS turns this to a strength by helping users to improve algorithms by
adding steps to the existing algorithm; Metropolis-Hastings based software is much better suited to this goal
than Gibbs-based software. The most common MCMC performance problem is high posterior correlation
among parameters; this generates high autocorrelation in consecutive MCMC samples, because parameters
are reluctant to move individually. YADAS’s typical approach is the “multiple parameter update”: one
proposes simultaneous moves to parameters in a direction of high variability. For example, in our second
example (as happens in many generalized linear model examples), the intercept and slope parameters for
some components were highly correlated, and the algorithm was improved with new steps that proposed
the addition of a random amount to the intercept while simultaneously subtracting a multiple of the same
amount from the slope.
The naturalness of defining algorithms in YADAS was also exhibited in the biased sampling problem,

where the numbers of items in each lot with the feature of interest needed to be sampled; this was handled
with YADAS’s general approach for sampling parameters that take on finitely many values.

3.3 Interfaces, present and future

YADAS is written in Java, and that provides portability advantages beyond its encouragement of generality
that helped YADAS become as ambitious as it is. However, few Bayesian statisticians use Java as their
language of choice, so this limits its popularity. An area of active YADAS development is providing additional
interfaces to its capabilities. One such interface is the interface with the R package (www.R-project.org), a
very popular, free statistics computing environment that is very similar to S-Plus. This interface facilitates
the handling of both input to and output from MCMC algorithms. One application we are exploring is
using genetic algorithms for experimental design: each candidate design selected by the genetic algorithm
will generate data, which will then be analyzed using YADAS, and the analysis results will be examined for
“fitness” and fedback to determine the next genetic algorithm generation. System reliability is an application
of particular interest. The R-YADAS interface is possible thanks to the SJava package of the omegahat
project (www.omegahat.org).
Another interface that will particularly help with reliability problems is the interface with a new graphical

tool for eliciting defining system structure and its relationship to data (Klamann and Koehler, 2004).

Acknowledgments

We thank Dee Won for her encouragement of this work.

References

Graves, T.L. (2001). YADAS: an object-oriented framework for data analysis using Markov chain Monte
Carlo. Los Alamos National Laboratory Technical Report LA-UR-01-4804.

Graves, T., Hamada, M., Booker, J., Decroix, M., Bowyer, C., Chilcoat, K., Thompson, S.K. (2004).
Estimating a proportion using stratified data arising from both convenience and random samples. Los
Alamos National Lab Technical Report LA-UR-03-8396.

Johnson, V., Graves, T., Hamada, M., Reese, C.S. (2003). A hierarchical model for estimating the
reliability of complex systems (with discussion). Bayesian Statistics 7, Oxford University Press, 199-
213, Bernardo, J.M., Bayarri, M.J., Berger, J., Dawid, A.P., Heckerman, D., Smith, A.F.M. and West,
M. (Eds.).

Klamann, R. and Koehler, A. (2004). GROMIT: Graphical Modeling Tool for System Statistical Struc-
ture. Los Alamos, NM: Los Alamos National Laboratory.

Spiegelhalter, D., Thomas, A., Best, N. (2000). WinBUGS Version 1.3 User Manual.


